Metro Stock Index: Performance of Top Companies in Major Metros (Updated every 5 minutes)
Average Metro Daily Change 0
Average Metro Change Since Jan 1, 2024 0
Average Metro Change Since Jan 1, 2023 0
Average Metro Change Since Jan 1, 2019 0

Coronavirus tracking March 2020

The open sharing of data on the internet and the quick collective response of scientists all over the globe have revolutionized the way we now contend with the threat of pandemics.

Shelly Fan filed this report for Singularity Hub:

A virus’s genetic blueprint is the first clue to its origins and traits. The response to COVID-19 was extremely rapid. Within a month of the first identified case in Wuhan, Chinese scientists had deposited the virus’s partial genetic blueprint into GenBank, an online, widely-consulted database.

Almost immediately, scientists from all sectors—academic, biotech, government—around the world began ordering parts of the virus genome online to study in their own labs.

[…]

As gene synthesis costs continue to drop and synthetic biology tools become more powerful, lab-made clones of pandemic-level pathogens could become even more prominent to fight off pandemics. As one coronavirus expert said, synthetic viruses are “the future in how the medical research community responds to a new threat.”

The other distinction between the SARS and COVID-19 responses isn’t biotech. It’s digital. When SARS broke out in 2003, the internet was only coming online for a majority of users, and email was relatively new. Getting information out from a quarantined region was immensely difficult.

Despite digital challenges, SARS still stood out as a unifying moment where international researchers—against all odds, rivalry, and internal squabbles—came together to share information, specimens, and reagents through personal communications. However, disseminating information to larger audiences relied on government agencies, including the CDC, or academic papers in journals.

In contrast, data exchange for COVID-19 was rapid and abundant. Thanks to the rise of pre-publication servers such as bioRxiv, scientists can now easily circumvent the months-long peer-review process in journal publishing and publish their results directly online.

Open sharing of information is a double-edged sword: because papers on bioRxiv aren’t peer-reviewed, their quality can be hit or miss. Nevertheless, the resource has rapidly emerged as the online watercooler for scientists studying COVID-19.